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Abstract This paper presents a calibration and measurement method for circuits embedded
in lossy printed multiconductor transmission lines. The experimental results illustrate the
complexity of the modal representation and the utility of the conductor representation for

circuit design.

INTRODUCTION

This paper presents a method based on the procedure of [1] for measuring the impedance matrices
of one-port circuits embedded in multiconductor transmission lines. The method determines both the
modal and the “power-normalized” conductor impedance matrices of [2] and [3] describing the
embedded device. We use a simple resistive circuit embedded in a pair of lossy asymmetric coupled
microstrip lines to illustrate the method.

We use the procedure of [1] to characterize the multiconductor transmission line in which the
device is embedded. That procedure appliesvttighted orthogonal distance regression algorithm
of [4] to find the matrices of transmission line impedances and admittances per unit length that best
reproduce a number of two-port scattering-parameter measurements performed on multiple lengths
of a multiconductor transmission line. The procedure of [1] can determine all of the conductor
parameters of the line without making any assumptions: this verifies that the line’s conductor

impedance matrig, is small, its conductor capacitance ma@pis symmetric and nearly frequency

Publication of the National Institute of Standards and Technology, not subject to copyright.
Reprinted from 48™ ARFTG Conf. Digest, pp. 46-53, Fall 1996.

1



independent, and its resistance and inductance ma&rieeslL. are symmetric, assumptions that we
checked with the full-wave calculation method of [5].

Accuracy is improved by settir@, to 0 and all of the other matrices symmetric, which reduces
the number of variables that must be determined by the algorithm. We repeated the optimization with
these assumptions to determine the low-frequency IimE.and then withC, set to this low-
frequency limit to determini, andL... At this final stage of the analysis we can also add a reciprocal
error box to the model to account for transition parasitics.

In this work we use the electrical model of the multiconductor transmission line determined by
this procedure to de-embed the electrical parameters of circuits embedded in the line. Since the
method of [1] determines both modal and conductor representations for the line, we are able to

determine both the modal and conductor impedance matrices describing the embedded device.

MODAL REPRESENTATION

The total transverse electric fil] and magnetic fieldH, in a closed transmission line that is

uniform inz and constructed of linear isotropic materials can be written as [6]

an(z) imn(z)
Et:; & ; Ht=§ hin: )

VOn ! Oon

wherev,,, andi,,, are the modal voltages and currents ofrihemode g,, andh,, are its transverse
modal electric and magnetic fields (functions only of the transverse coordistdy), the sums
span all of the excited modes in the line, and the time-harmonic depeeti&naderew is the real
angular frequency, has been suppressed. In open guides we must add a continuous spectrum of modes
to this discrete set [7], which we assume that we can neglect.
We restrict the normalizing voltageg and currents,, by v, i, = Py, = f g, xh,, -zdS, where
Re(p,,)>0 so that the complex power carried in the forward directio% byntthéorward and
backward modes in the absence of any other modes in the guide is giygri Qy This is the

conventional normalization and corresponds to the power condition used in [1], [2], and [8] and



suggested by Brews [9]. The characteristic impedance othh@ode iZ,, = Vo/ig= [Von|/Pon =
Po|ion|% its magnitude is fixed by the choice |of,| or |iy,| While its phase is fixed ..
When a finite number of discrete modes are excited in the line, the total complexppmameed

in the forward direction is

p = fEtth* Z il .mk

xh,-zdS =i Xy, Q)

where the superscript 1 indicates the Hermitian adjoint (conjugate transpose), the elements of the
cross-power matriX are defined by, = (Vo iy, ) f g, xhy, "+ dS X, =1, and the integrals are
performed over the entire transmission-line cross section [1]. Chagsing f g, dl enemq[estl)étEt dl

when only thenth forward and backward modes are excitéd in the line [8]. Likeige choosing
on= f h,,-dl ensures that = f h,-dl . The modal impedance ma@yief a linear one-port device
emb&dted in the line relate§3hdi, byv, = Z. i, .

To illustrate the behavior of the modal impedance matrix we applied the procedure of [1] to two
asymmetric coupled microstrip lines with widths of 54 um and 254 yum separated by a gap of 45 pm
printed on an alumina substrate with an approximate thickness of 254 um. The conductor
metalization had a measured thickness of 1.8 pm and measured dc conductivity df(3'3x10
We used the transmission line model to de-embed the modal impedance matrix of two small planar
resistors connected between the two conductors of the line and the ground plane on the back of the
substrate with via holes from measurements of the circuit embedded in the coupled microstrip lines.
As in [1] we defined the voltage path for tbenode, which corresponds to the even mode of a
symmetric microstrip line, to be between the 254 um wide microstrip conductor and the ground plane
on the back of the substrate; we defined the voltage path farriwde, which corresponds to the
odd mode of a symmetric microstrip line, to be between the 254 pm and 54 pm wide microstrip

conductors.
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Figure 1. The real part of the elements of the modal impedance &#ataid the conductor impedance matrix

Z_ for two small resistors connected between the two conductors of a pair of asymmetric microstrip lines and

the ground plane on the back of the substrate. The connections of the resistors are sketched in the lower right

of the figure.

Figure 1 plots in dashed lines the real parts of the elements of the modal impedance matrix of the

small circuit. The figure shows that the elementg adre highly frequency dependent. This illustrates

a serious drawback of the modal impedance matrix: its elements do not correspond to the impedances

anticipated from simple physical models [10] despite the small size and lumped nature of the circuit.

Circuit design in this modal representation is difficult not only because the impedance matrices do not

correspond to anticipated circuit behavior, but also because the complex power is not equal to

iTv.
m m
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Figure 2. The magnitude of the ratios of the voltages impressed bwtiser modes between the 54 pm wide

microstrip conductor and the groung,f and the 254 pm wide microstripreductor and the groungl).

Figure 2 shows calculations of the ratio of the voltages impressed bwtiter modes between
the two conductors and their grounds using the full-wave method of [5]; for the calculations we
assumed that the substrate had a dielectric constant of 10 and was lossless. The figure shows that
these ratios are not constant: they, and therefore the modal field configurations, change significantly
near the peak in the off-diagonal elementX.cfhis explains the frequency dependencg pfvhich

reflects this complex modal behavior.



CONDUCTORREPRESENTATION

Every excited mode in a multiconductor transmission line impresses a voltage across each of its
conductors, so the total voltage between any given pair of its conductors is a linear combination of
all of the modal voltages of the excited modes. Likewise the total current in any given conductor will
be a linear combination of the modal currents. References [2] and [3] refer to these linear
combinations of modal voltages and currents as the “conductor” voltages and currents.

The vectors of conductor voltagesand currentg, of [2] and [3] are defined bwcz MV v
and i_cz M i_m , whereM, andM, are unitless. The vectoysandi, are “power-normalized” in [2]
and [3] so thapzi_cT v this requires thidtf andM, satisfyMivazx . The conductor impedance
matrix Z, of a one-port device embedded in a line relgt@sdi. byv, = Zi..

As in [1] we defined the voltage paths fpy andv,, to be between the 54 um and the 254 pm
wide microstrip conductors, respectively, and the ground plane; these paths also correspond to the
connection paths of our two resistors. Figure 1 plots the real parts of the elements of the conductor
impedance matri¥, of the circuit in solid lines for this choice of paths. The figure shows that the real
parts of the elements gf are nearly constant with frequency and correspond closely to the measured
dc resistances of the two small resistors, as we would expect from simple physical considerations
[10]. We found that the imaginary parts of the elemengs intreased linearly from 0 with frequency
and again correspond to behavior we would anticipate from physical considerations. In addition, since
v, andi . are power normalized, the conductor impedance matrices can be used directly in

conventional circuit simulators to predict circuit response and power flow [2].
CONCLUSION

We presented a method for the measurement of one-port circuits embedded in lossy asymmetric
printed multiconductor transmission lines. The method illustrates the complexity of the modal
representation and the advantages of using the power-normalized conductor representations of [2]
and [3] in circuit design. The method makes possible fully corrected calibrations and measurements

in lossy multiconductor transmission lines.



The elements &I, do not correspond to the anticipated behavior of the circuit solely because the
voltage paths used to defmg andv,, correspond to those connecting the resistors, but also because
v, andi, are power normalized so that i_CT v, oo This power normalization must account for the off-
diagonal elements &, which become significant when the modal propagation constants approach
each other [11], and requires complex frequency dependent matticasdM,. This shows that
theories that assume real frequency independent relations between these quantities will fail in lossy
asymmetric coupled microstrip lines.

In the asymmetric microstrip lines studied here the power-normalized representation of [2] and
[3] and the reciprocity-based representation of [12] are nearly identical [2]; our results cannot be used
to show that either one of these representations is preferable. Although not demonstrated here, the

calibration method is also applicable to transmission lines with more than three conductors.
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